Research

Development of the skeletal system, and the evolution of life history and behavior

I study human evolution, life history and behavior, and growth and development of the skeletal system. My work draws on my background in anthropology as well as my more recent training in paleontology, ecology, and evolution to explore human biological variation in a comparative phylogenetic framework. My research also seeks to better understand the genetic architecture of morphological patterning, the evolution of adaptive traits, and species variation in the fossil record.

My research uses collections-based and non-destructive lab-based approaches that combine neontology and paleontology and work at the interdisciplinary junctions of anthropology, organismal and evolutionary biology. I use a range of comparative morphological and evolutionary methods including 2-dimensional and 3-dimensional morphometrics, high-resolution computed tomography imaging, comparative phylogenetics, and population modelling. Through my work, I currently aim to address three general questions:

  1. How does the human skeletal system grow and develop?
  2. How does morphological variation in the skeletal system affect the evolution of human life history and behavior?
  3. How do life history and behavior influence the evolution of the skeletal system?

Current Project:

Population dynamics, natural selection and dental variation in pre-Industrial modern humans

I am currently a postdoctoral scholar the University of Zürich working on a project investigating human population movement and dental variation using molecular anthropology and population modelling. This project combines morphodynamic modeling of growth and development of the dentition with micro-CT high-resolution image scanning and population modelling and is funded by the Swiss National Science Foundation.

Collaborators: Christoph Zollikofer (Universität Zürich), Marcia Ponce de León (Universität Zürich), Frédéric Guillaume (Universität Zürich), Jukka Jernvall (University of Helsinki), and Marc Scherrer (Universität Zürich).

Past and Ongoing Projects:

Skeletodental growth, ontogeny, and the evolution of reproductive behavior

This research project contains several subprojects that investigate different aspects of reproductive behavior in humans.

Maternal:infant constraint
Most recently, our work on dental variation and selection on breastfeeding and maternal:infant constraint was published in the Proceedings of the National Academy of Sciences (Hlusko et al. 2018). This collaborative work compared dental variation with genetic variation in the EDAR gene and the FADS gene cluster, presenting evidence for natural selection on a human population living in Beringia during the last ice age. This work has implications for the evolution of reproductive biology and reproductive behaviors, the peopling of the New World, and evolution of the dentition. Release of this publication was accompanied by press at Science Magazine.

Brain size, altriciality, and cooperative breeding
As an extension of this work, I am leading a project investigating variation in cranial morphology and the evolution of cooperative breeding and altriciality in humans. Cooperative breeding and altriciality are among a suite of reproductive behaviors that distinguish humans from other catarrhine primates. This project also looks at the evolution of bipedalism and brain size, along with the evolution of multiple births, also known as twinning.

Craniodental constraint, prenatal growth rates, and twinning
Expanding from my work mentoring an undergraduate student at UC Berkeley, this project investigates cranial morphology, prenatal growth rates, and dental development. Humans have reduced third molars and a high incidence of agenesis, or complete lack of development, of these teeth. Other anthropoid primates have also undergone evolutionary reduction of third molars, with some species (family Callitrichidae) having lost the third molars completely. This project looks at pre- and postnatal growth rates in primates to better understand dental growth and development.

Figure adapted from Monson et al. (in press)

Collaborators: Leslea Hlusko (UC Berkeley), G. Richard Scott (University of Nevada Reno), Marin Pilloud (University of Nevada Reno), Joshua Carlson (UC Berkeley), Nina Jablonski (Pennsylvania State University), George Chaplin (Pennsylvania State University), Scott Elias (University of Colorado Boulder), Dennis O’Rourke (University Kansas), Christoph Zollikofer (Universität Zürich), Marcia Ponce de León (Universität Zürich), Jeffrey Coleman (UC Berkeley).

Relevant publications:

Developmental constraint and the evolution of the skeletal system

This project investigates how developmental constraints affect the evolution of the skeleton and dentition, characterizing normal variation in humans and contextualizing human variation within the mammals more broadly.

Ontogeny of dental eruption
My dissertation at the University of California Berkeley examined the evolution of dental eruption sequence, placing humans within the taxonomic and evolutionary context of other eutherian mammals. The late eruption of the third molar in humans, well after reproductive maturity, is not only a long-standing question of significant research interest, but also contributes to issues in modern human health. Surgical extraction of the third molars (known as the wisdom teeth) accounts for billions of dollars of health bills annually in the United States, with many cases leading to temporary and even permanent nerve damage and paralysis in the face. My dissertation worked to understand the factors contributing to late eruption of the third molar in humans, assessing the impact of phylogeny and life history on patterns of dental eruption sequence and finding results that refute Schultz’s Rule of dental eruption. Half of my dissertation is published in the Journal of Mammalian Evolution (Monson and Hlusko 2016), and the second half is in press at the American Journal of Physical Anthropology (Monson and Hlusko in press).

Figure adapted from Monson and Hlusko (in press)

Figure adapted from Monson and Hlusko (2016)

 

 

 

 

 

 

 

 

 

 

 

Genetic patterning mechanisms and the evolution of the dentition
Our earlier work identified two ratios (MMC and PMM) that are the morphological outputs of genetic mechanisms that pattern the dentition (Hlusko et al. 2016). These ratios are heritable, vary between primate taxa, and are independent of body size. We are now working to characterize MMC and PMM variation in mammals more generally. These projects vary from a broad taxonomic investigation of dental proportions in Boreoeutheria (Monson et al. in prep) to taxon-focused investigations of dental variation in extant (Zuercher et al. in prep) and fossil clades (Brasil et al. in prep). Publication of this work was accompanied by press at Science Daily.

Evolution of human limb proportions and stature
We recently completed a project investigating allometric variation in modern humans and the relationship between body proportions and elite athletic success. This was one of the first studies to investigate body proportions in non-clinical individuals of extremely tall stature. Additionally, this work highlights the relationship between arm span (also known as wingspan) and stature, and elite athletic success in NBA basketball players and MMA fighters. Release of this publication was accompanied by press at Inverse, YahooSports, and University of California.

Figure adapted from Monson et al. (2018)

Collaborators: Leslea Hlusko (UC Berkeley), Marianne Brasil (UC Berkeley), Christopher Schmitt (Boston University), Peter Ungar (University of Arkansas), Jean-Renaud Boisserie (Université de Poitiers), Antoine Souron (University of Bordeaux), Risa Takenaka (UC Berkeley), Madeleine Zuercher (UC Berkeley), Sunwoo Yoo (UC Berkeley), Selene Clay (UC Berkeley, University of Chicago), Michael Zhou (UC Berkeley), Shruti Ravindramurthy (UC Berkeley), Rena Dvoretzky (UC Berkeley).

Relevant publications:

Craniodental variation in the primate fossil record

I am part of a research group investigating Old World monkey (Cercopithecidae) evolution in Africa. Building out of our work on Cercopithecidae evolution in South Africa, I am currently a member of the Middle Awash Research team run by Dr. Tim White (UC Berkeley). As part of this research team, I am studying a large collection of Plio-Pleistocene monkey remains from Ethiopia, held at the National Museum in Addis Ababa, Ethiopia.

Craniofacial variation in the primate fossil record (evolution of primates in Africa)
My earlier work on paleontology collections accessioned by the UC Africa Expedition of 1947-1948 fueled an interest in non-hominid primate evolution in Africa. In 2015 I visited museum collections and excavation sites in Johannesburg and Pretoria, South Africa, collecting data on cranial variation in Plio-Pleistocene South African primates (Cercopithecidae, Old World monkeys). Last year, we published a paper in Palaeontologia Electronica on craniofacial variation and taxonomic diversity in the South African monkey fossil record highlighting the relatively limited cranial variation in these fossils relative to extant species and suggesting the taxonomy may be overinflated in this extinct primate community. We have ongoing work on the taxonomy of these fossils, and the on the evolution of life history in African Cercopithecidae.

Figure modified from Monson et al. (2017)

Applications of machine learning to paleoanthropology
We recently published our working using machine learning to classify extant apes and interpret the dental morphology of the chimpanzee-human last common ancestor at PaleoBios, the official publication of the University of California Museum of Paleontology. This work applied machine learning to the question of whether chimpanzees are the best extant homologue for the last common ancestor of humans and chimps, as is currently accepted by many researchers. Comparing three types of dental data, we found that the dental proportions of Miocene apes are much more similar to extant gorillas than to chimpanzees, and we suggest that gorillas make better models for understanding the evolution of relative sizes of the teeth in humans than do chimpanzees. Release of this publication was accompanied by press at Inverse.com, News.com.au, and an interview for Up All Night, the BBC radio program hosted by Rhod Sharpe.

Figure adapted from Monson et al. (2018) PaleoBios

Hominoid dental diversity
Expanding on our past work identifying two ratios that capture the output of genetic mechanisms patterning the postcanine dentition in primates (Hlusko et al. 2016), we are examining dental diversity in fossil hominoids, Miocene to present. Led by Marianne Brasil, PhD candidate at UC Berkeley, this project also delves into the taxonomic debate of the utility of the species in paleoanthropology.

Collaborators: Leslea Hlusko (UC Berkeley), Marianne Brasil (UC Berkeley), Dominic Stratford (University of the Witwatersrand), Dave Armitage (University of Notre Dame), Chris Schmitt (Boston University), Tim White (UC Berkeley).

Relevant publications:

My research paradigm

  • Humans vary morphologically
  • Natural selection acts on variation
  • Genetic and developmental pleiotropy links variation in the skeletal system with variation in other phenotypes and behaviors
  • Understanding how phenotypes vary in living and fossil populations will help us understand how morphological variation evolved

My research methods

 My research incorporates

  • 2-dimensional and 3-dimensional morphometrics exploring shape and size changes in extant and fossil populations
  • Comparative phylogenetic analyses of phenotypic variation
  • Population modeling and molecular anthropology – comparison of phenotypes with neutral genetic variation

My research spans biological anthropology, organismal biology, and paleontology.